Shell Oil: Mining Oil from Rock 
By Linda Seebach

Posted 2009 Updated February 10, 2011.

One of the reasons for interest in oil sands is the potential magnitudes involved. The Alberta Energy and Utilities Board estimates the ultimate volume of Canadian bitumen in-place at 2.5 trillion barrels, which if it could somehow all be extracted would be enough to satisfy by itself the entire world petroleum demand at current rates for 80 years. Even if only a tiny fraction of this proves ultimately to be developed, this would be a very important resource indeed.  Most of the information sited in this article is from the author: Linda Seebach.

When oil prices last touched record highs - actually, after adjusting for inflation we're not there yet, but given the effects of Hurricane Katrina, we probably will be soon - politicians' response was more hype than hope. Oil shale in Colorado! Tar sands in Alberta! What is oil shale? OPEC be damned!

To put the situation in context, Alberta writer David Finch, the author of Pumped: Everyone's Guide to the Oil Patch, suggests this experiment: “Take molasses out of your kitchen cupboard, put as much sand in there as molasses, stir it up, and then put it outside where it gets cold and thick and won't flow – well, that's what the tar sand is like. It's extremely hard to work with, and it wrecks all your equipment.” Source: Andersen Make a tar sand from molasses

Remember the Carter-era Synfuels Corp. debacle? It was a response to the '70s energy shortages, closed down in 1985 after accomplishing essentially nothing at great expense, which is pretty much a description of what usually happens when the government tries to take over something that the private sector can do better. Private actors are, after all, spending their own money.

Today's standard process of producing oil from shale is described in MPCI method.

Since 1981, Shell researchers at the company's division of "unconventional resources" have been spending their own money trying to figure out how to get usable energy out of oil shale. Judging by the presentation the Rocky Mountain News heard this week, they think they've got it.

oil shale in situ Shell's method, which it calls "in situ conversion," is simplicity itself in concept but exquisitely ingenious in execution. Terry O'Connor, a vice president for external and regulatory affairs at Shell Exploration and Production, explained how it's done (and they have done it, in several test projects):

Drill shafts into the oil-bearing rock. Drop heaters down the shaft. Cook the rock until the hydrocarbons boil off, the lightest and most desirable first. Collect them.

Please note, you don't have to go looking for oil fields when you're brewing your own.

On one small test plot about 20 feet by 35 feet, on land Shell owns, they started heating the rock in early 2004. "Product" - about one-third natural gas, two-thirds light crude - began to appear in September 2004. They turned the heaters off about a month ago, after harvesting about 1,500 barrels of oil.

While trying to do the math, O'Connor told us the answers. Upwards of a million barrels an acre, a billion barrels a square mile. And the oil shale formation in the Green River Basin, most of which is in Colorado, covers more than a thousand square miles - the largest fossil fuel deposits in the world.

Wow!!!!

They don't need subsidies; the process should be commercially feasible with world oil prices at $30 a barrel. The energy balance is favorable; under a conservative life-cycle analysis, it should yield 3.5 units of energy for every 1 unit used in production. The process recovers about 10 times as much oil as mining the rock and crushing and cooking it at the surface, and it's a more desirable grade. Reclamation is easier because the only thing that comes to the surface is the oil you want.

And we've hardly gotten to the really ingenious part yet. While the rock is cooking, at about 650 or 750 degrees Fahrenheit, how do you keep the hydrocarbons from contaminating ground water? Why, you build an ice wall around the whole thing. As O'Connor said, it's counterintuitive.

But ice is impermeable to water. So around the perimeter of the productive site, you drill lots more shafts, only 8 to 12 feet apart, put in piping, and pump refrigerants through it. The water in the ground around the shafts freezes, and eventually forms a 20- to 30-foot ice barrier around the site.

Next you take the water out of the ground inside the ice wall, turn up the heat, and then sit back and harvest the oil until it stops coming in useful quantities. When production drops, it falls off rather quickly.

That's an advantage over ordinary wells, which very gradually get less productive as they age.

Then you pump the water back in. (Well, not necessarily the same water, which has moved on to other uses.) It's hot down there so the water flashes into steam, picking up loose chemicals in the process. Collect the steam, strip the gunk out of it, repeat until the water comes out clean. Then you can turn off the heaters and the chillers and move on to the next plot (even saving one or two of the sides of the ice wall, if you want to be thrifty about it).

Most of the best territory for this astonishing process is on land under the control of the Bureau of Land Management. Shell has applied for a research and development lease on 160 acres of BLM land, which could be approved by February. That project would be on a large enough scale so design of a commercial facility could begin.

The 2005 energy bill altered some provisions of the 1920 Minerals Leasing Act that were a deterrent to large-scale development, and also laid out a 30-month timetable for establishing federal regulations governing commercial leasing.

Shell has been deliberately low-key about their R&D, wanting to avoid the hype, and the disappointment, that surrounded the last oil-shale boom. But O'Connor said the results have been sufficiently encouraging they are gradually getting more open. Starting next week, they will be holding public hearings in northwest Colorado.

"World oil demand is projected to rise to 119 million barrels per day by 2025; lets round this off to 120 million barrels. Also let us assume that oil shale could yield 1 trillion barrels of oil. That oil shale would satisfy total world oil demand by this equation: 1,000,000 million barrels/(365 days per year times 120 million barrels per day) which equals only 22 years at the projected year 2025 consumption rate.

Even oil shale can delay the end of the oil era by a couple of decades. Still, we could use those decades to develop technologies to lower the cost of nuclear and photovoltaic solar power."

Parker Randall: Shell oil process oil from rock

Reference:

ANDERSSEN ERIN, SHAWN MCCARTHY AND ERIC REGULY, "An empire from a tub of goo," Saturday's Globe and Mail, January 26, 2008 . Alberta goo

_____, "Brief Introduction" MPIC, [ Indirect Thermal Processing System (ITPS) to produce oil from oil shale, oil sands, coal and petroleum hazardous materials. ] MPCI method

George Richard L. "Mining for Oil," Scientific American, March 1998. mining oil Sc Am

_____, "Oil sands forever," Green Car progress, November 24, 2005. What is oil shale?

-----," oil shale economics, Wikipedia. oli shale economics

Parker Randall, "Shell Oil Shale Extraction Technology Economically Viable? ," Future Pundit, September 05 2007 Shell oil process oil from rock

Seebach Linda,"Shell's ingenious approach to oil shale is pretty slick," Rocky Mountain news, September 3, 2005. Sell rock oil recovery

Linda Seebach is an editorial writer for the News. She can be reached by telephone at (303) 892-2519 or by e-mail at seebach@RockyMountainNews.com.